Задания
Версия для печати и копирования в MS Word
Тип 5 № 1134
i

В жар­кий день для охла­жде­ния яб­лоч­но­го сока мас­сой mс  =  300 г, на­хо­дя­ще­го при тем­пе­ра­ту­ре t1  =  30 °С, Вася ис­поль­зо­вал ку­би­ки льда из мо­ро­зил­ки. Длина ребра ку­би­ка a  =  3 см, на­чаль­ная тем­пе­ра­ту­ра t2  =  −10 °С. Теп­ло­об­ме­ном сока и ку­би­ков с окру­жа­ю­щей сре­дой и ста­ка­ном можно пре­не­бречь. Удель­ная теплоёмкость сока cс  =  4200 Дж/(кг · °С), удель­ная теплоёмкость льда сл  =  2100 Дж/(кг · °С), удель­ная теп­ло­та плав­ле­ния льда λ  =  330 кДж/кг.

1)  Опре­де­ли­те массу од­но­го ку­би­ка льда, если плот­ность льда ρ  =  900 кг/м3.

2)  Вася опус­кал ку­би­ки в сок до тех пор, пока они не пе­ре­ста­ли таять. Какой стала тем­пе­ра­ту­ра со­дер­жи­мо­го ста­ка­на?

3)  Какое ми­ни­маль­ное ко­ли­че­ство ку­би­ков Васе для этого по­на­до­би­лось?

На­пи­ши­те пол­ное ре­ше­ние этой за­да­чи

Спрятать решение

Ре­ше­ние.

1)  Масса од­но­го ку­би­ка льда m=\rho a в кубе =24,3 г.

2)  Так как лёд в ста­ка­не пе­ре­стал таять, ко­неч­ная тем­пе­ра­ту­ра со­дер­жи­мо­го ста­ка­на 0 °С.

3)  Масса всего льда, опу­щен­но­го в ста­кан, M=mN=N\rho a в кубе (где N  — ис­ко­мое число ку­би­ков). За­пи­шем урав­не­ние теп­ло­во­го ба­лан­са:

c_лM левая круг­лая скоб­ка 0 минус t_2 пра­вая круг­лая скоб­ка плюс \lambda M=c_сm_c левая круг­лая скоб­ка t_1 минус 0 пра­вая круг­лая скоб­ка .

От­сю­да масса льда: M= дробь: чис­ли­тель: c_сm_сt_1, зна­ме­на­тель: \lambda минус c_лt_2 конец дроби \approx107,7 г. Зна­чит, не­об­хо­ди­мо N= дробь: чис­ли­тель: M, зна­ме­на­тель: m конец дроби \approx4,43 ку­би­ка. Это зна­че­ние не­об­хо­ди­мо округ­лить в боль­шую сто­ро­ну, так как ко­ли­че­ство ку­би­ков целое, т. е. ку­би­ков по­на­до­бит­ся 5.

 

Ответ: 1) 24,3 г; 2) 0 °C; 3) 5 ку­би­ков.


-------------
Дублирует задание № 821.
Спрятать критерии
Критерии проверки:

Источники: